Chereads / Thinking Mind general knowledge Morn kuntea +meng lu / Chapter 25 - Kite in square part 14

Chapter 25 - Kite in square part 14

Page 216

The environmental impact of agriculture can vary widely—ultimately, environmental impact of agriculture depends on the production practices of the system used by farmers. There are two types of indicators of environmental impact: means-based, which is based on the farmer's production methods, and effect-based, which is the impact that farming methods have on the farming system or on emissions to the environment. An example of a means-based indicator would be the quality of groundwater, that is effected by the amount of nitrogen applied to the soil. An indicator reflecting the loss of nitrate to groundwater would be effect-based.

The environmental impact of agriculture involves a variety of factors from the soil, to water, the air, animal and soil diversity, plants, and the food itself. Some of the environmental issues that are related to agriculture are climate change, deforestation, genetic engineering, irrigation problems, pollutants, soil degradation, and waste. The environmental impact of irrigation includes the changes in quantity and quality of soil and water as a result of irrigation and the ensuing effects on natural and social conditions at the tail-end and downstream of the irrigation scheme. The impacts stem from the changed hydrological conditions owing to the installation and operation of the scheme. An irrigation scheme often draws water from the river and distributes it over the irrigated area. As a hydrological result it is found that:

* the downstream river discharge is reduced

* the evaporation in the scheme is increased

* the groundwater recharge in the scheme is increased

* the level of the water table rises

* the drainage flow is increased

Page 217

Lal and Stewart estimated global loss of agricultural land by degradation and abandonment at 12 million hectares per year. In contrast, according to Scherr, GLASOD (Global Assessment of Human-Induced Soil Degradation, under the UN Environment Programme) estimated that 6 million hectares of agricultural land per year had been lost to soil degradation since the mid-1940s, and she noted that this magnitude is similar to earlier estimates by Dudal and by Rozanov et al. Such losses are attributable not only to soil erosion, but also to salinization, loss of nutrients and organic matter, acidification, compaction, water logging and subsidence. Human-induced land degradation tends to be particularly serious in dry regions. Energy Industry : The environmental impact of energy harvesting and consumption is diverse. In the real world, consumption of fossil fuel resources leads to global warming and climate change. However, little change is being made in many parts of the world. If the peak oil theory proves true, more explorations of viable alternative energy sources could minimize the environmental impact of human energy demands, leading to a more 'environmentally friend' resource consumption. In recent years there has been a trend towards the increased commercialization of various renewable energy sources.Rapidly advancing technologies can achieve a transition of energy generation, water and waste management, and food production towards better environmental and energy usage practices using methods of systems ecology and industrial ecology.

Page 218

Invasive Species: Introductions of species, particularly plants into new areas, by whatever means and for whatever reasons have brought about major and permanent changes to the environment over large areas. Examples include the introduction of Caulerpa taxifolia into the Mediterranean, the introduction of oat species into the California grasslands, and the introduction of privet, kudzu, and purple loosestrife to North America. Rats, cats, and goats have radically altered biodiversity in many islands. Additionally, introductions have resulted in genetic changes to native fauna where interbreeding has taken place, as with buffalo with domestic cattle, and wolves with domestic dogs. Transport: The environmental impact of transport is significant because it is a major user of energy, and burns most of the world's petroleum. This creates air pollution, including nitrous oxides and particulates, and is a significant contributor to global warming through emission of carbon dioxide, for which transport is the fastest-growing emission sector. By subsector, road transport is the largest contributor to global warming. Environmental regulations in developed countries have reduced the individual vehicles emission; however, this has been offset by an increase in the number of vehicles, and more use of each vehicle. Some pathways to reduce the carbon emissions of road vehicles considerably have been studied. Energy use and emissions vary largely between modes, causing environmentalists to call for a transition from air and road to rail and human-powered transport, and increase transport electrification and energy efficiency. Other environmental impacts of transport systems include traffic congestion and automobile-oriented urban sprawl, which can consume natural habitat and agricultural lands. By reducing transportation emissions globally, it is predicted that there will be significant positive effects on Earth's air quality, acid rain, smog and climate change.

Page 219

The environmental impact of agriculture varies based on the wide variety of agricultural practices employed around the world. Ultimately, the environmental impact depends on the production practices of the system used by farmers. The connection between emissions into the environment and the farming system is indirect, as it also depends on other climate variables such as rainfall and temperature. There are two types of indicators of environmental impact: "means-based", which is based on the farmer's production methods, and "effect-based", which is the impact that farming methods have on the farming system or on emissions to the environment. An example of a means-based indicator would be the quality of groundwater that is affected by the amount of nitrogen applied to the soil. An indicator reflecting the loss of nitrate to groundwater would be effect-based.

The environmental impact of agriculture involves a variety of factors from the soil, to water, the air, animal and soil diversity, plants, and the food itself. Some of the environmental issues that are related to agriculture are climate change, deforestation, genetic engineering, irrigation problems, pollutants, soil degradation, and waste. The environmental impact of fishing can be divided into issues that involve the availability of fish to be caught, such as overfishing, sustainable fisheries, and fisheries management; and issues that involve the impact of fishing on other elements of the environment, such as by-catch and destruction of habitat such as coral reefs.According to the 2019 Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services report, overfishing is the main driver of mass species extinction in the oceans.

Page 220

These conservation issues are part of marine conservation, and are addressed in fisheries science programs. There is a growing gap between how many fish are available to be caught and humanity's desire to catch them, a problem that gets worse as the world population grows. Similar to other environmental issues, there can be conflict between the fishermen who depend on fishing for their livelihoods and fishery scientists who realize that if future fish populations are to be sustainable then some fisheries must reduce or even close. The journal Science published a four-year study in November 2006, which predicted that, at prevailing trends, the world would run out of wild-caught seafood in 2048. The scientists stated that the decline was a result of overfishing, pollution and other environmental factors that were reducing the population of fisheries at the same time as their ecosystems were being degraded. Yet again the analysis has met criticism as being fundamentally flawed, and many fishery management officials, industry representatives and scientists challenge the findings, although the debate continues. Many countries, such as Tonga, the United States, Australia and New Zealand, and international management bodies have taken steps to appropriately manage marine resources. The UN's Food and Agriculture Organization (FAO) released their biennial State of World Fisheries and Aquaculture in 2018 noting that capture fishery production has remained constant for the last two decades but unsustainable overfishing has increased to 33% of the world's fisheries. They also noted that aquaculture, the production of farmed fish, has increased from 120 million tonnes per year in 1990 to over 170 million tonnes in 2018. Populations of oceanic sharks and rays have been reduced by 71% since 1970, largely due to overfishing. More than three-quarters of the species comprising this group are now threatened with extinction.

Page 221

The environmental impact of irrigation includes the changes in quantity and quality of soil and water as a result of irrigation and the ensuing effects on natural and social conditions at the tail-end and downstream of the irrigation scheme. The impacts stem from the changed hydrological conditions owing to the installation and operation of the scheme. An irrigation scheme often draws water from the river and distributes it over the irrigated area. As a hydrological result it is found that:

* the downstream river discharge is reduced

* the evaporation in the scheme is increased

* the groundwater recharge in the scheme is increased

* the level of the water table rises

* the drainage flow is increased.

These may be called direct effects.

Effects on soil and water quality are indirect and complex, and subsequent impacts on natural, ecological and socio-economic conditions are intricate. In some, but not all instances, water logging and soil salinization can result. However, irrigation can also be used, together with soil drainage, to overcome soil salinization by leaching excess salts from the vicinity of the root zone. Irrigation can also be done extracting groundwater by (tube)wells. As a hydrological result it is found that the level of the water descends. The effects may be water mining, land/soil subsidence, and, along the coast, saltwater intrusion. Irrigation projects can have large benefits, but the negative side effects are often overlooked. Agricultural irrigation technologies such as high powered water pumps, dams, and pipelines are responsible for the large-scale depletion of fresh water resources such as aquifers, lakes, and rivers. As a result of this massive diversion of freshwater, lakes, rivers, and creeks are running dry, severely altering or stressing surrounding ecosystems, and contributing to the extinction of many aquatic species.

Page 222

Environmental impacts associated with meat production include use of fossil energy, water and land resources, greenhouse gas emissions, and in some instances, rainforest clearing, water pollution and species endangerment, among other adverse effects. Steinfeld et al. of the FAO estimated that 18% of global anthropogenic GHG (greenhouse gas) emissions (estimated as 100-year carbon dioxide equivalents) are associated in some way with livestock production. FAO data indicate that meat accounted for 26% of global livestock product tonnage in 2011. Globally, enteric fermentation (mostly in ruminant livestock) accounts for about 27% of anthropogenic methane emissions, Despite methane's 100-year global warming potential, recently estimated at 28 without and 34 with climate-carbon feedbacks, methane emission is currently contributing relatively little to global warming. Although reduction of methane emissions would have a rapid effect on warming, the expected effect would be small. Other anthropogenic GHG emissions associated with livestock production include carbon dioxide from fossil fuel consumption (mostly for production, harvesting and transport of feed), and nitrous oxide emissions associated with the use of nitrogenous fertilizers, growing of nitrogen-fixing legume vegetation and manure management. Management practices that can mitigate GHG emissions from production of livestock and feed have been identified. Considerable water use is associated with meat production, mostly because of water used in production of vegetation that provides feed. There are several published estimates of water use associated with livestock and meat production, but the amount of water use assignable to such production is seldom estimated. For example, "green water" use is evapotranspirational use of soil water that has been provided directly by precipitation; and "green water" has been estimated to account for 94% of global beef cattle production's "water footprint",and on rangeland, as much as 99.5% of the water use associated with beef production is "green water".

Page 223

Impairment of water quality by manure and other substances in runoff and infiltrating water is a concern, especially where intensive livestock production is carried out. In the US, in a comparison of 32 industries, the livestock industry was found to have a relatively good record of compliance with environmental regulations pursuant to the Clean Water Act and Clean Air Act,but pollution issues from large livestock operations can sometimes be serious where violations occur. Various measures have been suggested by the US Environmental Protection Agency, among others, which can help reduce livestock damage to streamwater quality and riparian environments.

Changes in livestock production practices influence the environmental impact of meat production, as illustrated by some beef data. In the US beef production system, practices prevailing in 2007 are estimated to have involved 8.6% less fossil fuel use, 16% less greenhouse gas emissions (estimated as 100-year carbon dioxide equivalents), 12% less withdrawn water use and 33% less land use, per unit mass of beef produced, than in 1977. From 1980 to 2012 in the US, while population increased by 38%, the small ruminant inventory decreased by 42%, the cattle-and-calves inventory decreased by 17%, and methane emissions from livestock decreased by 18%; yet despite the reduction in cattle numbers, US beef production increased over that period. Some impacts of meat-producing livestock may be considered environmentally beneficial. These include waste reduction by conversion of human-inedible crop residues to food, use of livestock as an alternative to herbicides for control of invasive and noxious weeds and other vegetation management,use of animal manure as fertilizer as a substitute for those synthetic fertilizers that require considerable fossil fuel use for manufacture, grazing use for wildlife habitat enhancement, and carbon sequestration in response to grazing practices, among others.

Page 224

Conversely, according to some studies appearing in peer-reviewed journals, the growing demand for meat is contributing to significant biodiversity loss as it is a significant driver of deforestation and habitat destruction.Moreover, the 2019 Global Assessment Report on Biodiversity and Ecosystem Services by IPBES also warns that ever increasing land use for meat production plays a significant role in biodiversity loss.A 2006 Food and Agriculture Organization report, Livestock's Long Shadow, found that around 26% of the planet's terrestrial surface is devoted to livestock grazing. Palm oil is a type of vegetable oil, found in oil palm trees, which are native to West and Central Africa. Initially used in foods in developing countries, palm oil is now also used in food, cosmetic and other types of products in other nations as well. Over one-third of vegetable oil consumed globally is palm oil. The consumption of palm oil in food, domestic and cosmetic products all over the world means there is a high demand for it. To meet this, oil palm plantations are created, which means removing natural forests to clear space. This deforestation has taken place in Asia, Latin America and West Africa, with Malaysia and Indonesia holding 90% of global oil palm trees. These forests are home to a wide range of species, including many endangered animals, ranging from birds to rhinos and tigers. Since 2000, 47% of deforestation has been for the purpose of growing oil palm plantations, with around 877,000 acres being affected per year.

Page 225

Natural forests are extremely biodiverse, with a wide range of organisms using them as their habitat. But oil palm plantations are the opposite. Studies have shown that oil palm plantations have less than 1% of the plant diversity seen in natural forests, and 47–90% less mammal diversity. This is not because of the oil palm itself, but rather because the oil palm is the only habitat provided in the plantations. The plantations are therefore known as a monoculture, whereas natural forests contain a wide variety of flora and fauna, making them highly biodiverse. One of the ways palm oil could be made more sustainable (although it is still not the best option) is through agroforestry, whereby the plantations are made up of multiple types of plants used in trade – such as coffee or cocoa. While these are more biodiverse than monoculture plantations, they are still not as effective as natural forests. In addition to this, agroforestry does not bring as many economic benefits to workers, their families and the surrounding areas. The RSPO is a non-profit organisation that has developed criteria that its members (of which, as of 2018, there are over 4,000) must follow to produce, source and use sustainable palm oil (Certified Sustainable Palm Oil; CSPO). Currently, 19% of global palm oil is certified by the RSPO as sustainable.

The CSPO criteria states that oil palm plantations cannot be grown in the place of forests or other areas with endangered species, fragile ecosystems, or those that facilitate the needs of local communities. It also calls for a reduction in pesticides and fires, along with several rules for ensuring the social wellbeing of workers and the local communities.

Page 226

Environmental degradation : Human activity is causing environmental degradation, which is the deterioration of the environment through depletion of resources such as air, water and soil; the destruction of ecosystems; habitat destruction; the extinction of wildlife; and pollution. It is defined as any change or disturbance to the environment perceived to be deleterious or undesirable.As indicated by the I=PAT equation, environmental impact (I) or degradation is caused by the combination of an already very large and increasing human population (P), continually increasing economic growth or per capita affluence (A), and the application of resource-depleting and polluting technology (T). According to a 2021 study published in Frontiers in Forests and Global Change, roughly 3% of the planet's terrestrial surface is ecologically and faunally intact, meaning areas with healthy populations of native animal species and little to no human footprint. Many of these intact ecosystems were in areas inhabited by indigenous peoples. Habitat fragmentation : According to a 2018 study in Nature, 87% of the oceans and 77% of land (excluding Antarctica) have been altered by anthropogenic activity, and 23% of the planet's landmass remains as wilderness. Habitat fragmentation is the reduction of large tracts of habitat leading to habitat loss. Habitat fragmentation and loss are considered as being the main cause of the loss of biodiversity and degradation of the ecosystem all over the world. Human actions are greatly responsible for habitat fragmentation, and loss as these actions alter the connectivity and quality of habitats. Understanding the consequences of habitat fragmentation is important for the preservation of biodiversity and enhancing the functioning of the ecosystem. Both agricultural plants and animals depend on pollination for reproduction. Vegetables and fruits are an important diet for human beings and depend on pollination. Whenever there is habitat destruction, pollination is reduced and crop yield as well. Many plants also rely on animals and most especially those that eat fruit for seed dispersal. Therefore, the destruction of habitat for animal severely affects all the plant species that depend on them.

Page 227

Mass extinction: Biodiversity generally refers to the variety and variability of life on Earth, and is represented by the number of different species there are on the planet. Since its introduction, Homo sapiens (the human species) has been killing off entire species either directly (such as through hunting) or indirectly (such as by destroying habitats), causing the extinction of species at an alarming rate. Humans are the cause of the current mass extinction, called the Holocene extinction, driving extinctions to 100 to 1000 times the normal background rate. Though most experts agree that human beings have accelerated the rate of species extinction, some scholars have postulated without humans, the biodiversity of the Earth would grow at an exponential rate rather than decline.The Holocene extinction continues, with meat consumption, overfishing, ocean acidification and the amphibian crisis being a few broader examples of an almost universal, cosmopolitan decline in biodiversity. Human overpopulation (and continued population growth) along with profligate consumption are considered to be the primary drivers of this rapid decline.[9][106] The 2017 World Scientists' Warning to Humanity stated that, among other things, this sixth extinction event unleashed by humanity could annihilate many current life forms and consign them to extinction by the end of this century. A June 2020 study published in PNAS argues that the contemporary extinction crisis "may be the most serious environmental threat to the persistence of civilization, because it is irreversible" and that its acceleration "is certain because of the still fast growth in human numbers and consumption rates."

Page 228

Decline in biodiversity : Summary of major biodiversity-related environmental-change categories expressed as a percentage of human-driven change (in red) relative to baseline (blue) Defaunation is the loss of animals from ecological communities. It has been estimated that from 1970 to 2016, 68% of the world's wildlife has been destroyed due to human activity. In South America, there is believed to be a 70 percent loss. A May 2018 study published in PNAS found that 83% of wild mammals, 80% of marine mammals, 50% of plants and 15% of fish have been lost since the dawn of human civilization. Currently, livestock make up 60% of the biomass of all mammals on earth, followed by humans (36%) and wild mammals (4%). According to the 2019 global biodiversity assessment by IPBES, human civilization has pushed one million species of plants and animals to the brink of extinction, with many of these projected to vanish over the next few decades.

Whenever there is a decline in plant biodiversity, the remaining plants start to experience diminishing productivity. As a result, the loss of biodiversity continues being a threat to the productivity of the ecosystem all over the world, and this over ally impacts the natural ecosystem functioning. A 2019 report that assessed a total of 28,000 plant species concluded that close to half of them were facing a threat of extinction. The failure of noticing and appreciating plants is regarded as "plant blindness", and this is a worrying trend as it puts more plants at the threat of extinction than animals. Our increased farming has come at a higher cost to plant biodiversity as half of the habitable land on Earth is used for agriculture, and this is one of the major reasons behind the plant extinction crisis.

Page 229

Invasive species: Invasive species are defined by the U.S. Department of Agriculture as non-native to the specific ecosystem, and whose presence is likely to harm the health of humans or the animals in said system. Introductions of non-native species into new areas have brought about major and permanent changes to the environment over large areas. Examples include the introduction of Caulerpa taxifolia into the Mediterranean, the introduction of oat species into the California grasslands, and the introduction of privet, kudzu, and purple loosestrife to North America. Rats, cats, and goats have radically altered biodiversity in many islands. Additionally, introductions have resulted in genetic changes to native fauna where interbreeding has taken place, as with buffalo with domestic cattle, and wolves with domestic dogs. Human Introduced Invasive Species, cat: Domestic and feral cats globally are particularly notorious for their destruction of native birds and other animal species. This is especially true for Australia, which attributes over two-thirds of mammal extinction to domestic and feral cats, and over 1.5 billion deaths to native animals each year.Because domesticated outside cats are fed by their owners, they can continue to hunt even when prey populations decline and they would otherwise go elsewhere. This is a major problem for places where there is a highly diverse and dense number of lizards, birds, snakes, and mice populating the area.Roaming outdoor cats can also be attributed to the transmission of harmful diseases like rabies and toxoplasmosis to the native wildlife population. Burmese Python : Another example of a destructive introduced invasive species is the Burmese Python. Originating from parts of Southeast Asia, the Burmese Python has made the most notable impact in the Southern Florida Everglades of the United States. After a breeding facility breach in 1992 due to flooding and snake owners releasing unwanted pythons back into the wild, the population of the Burmese Python would boom in the warm climate of Florida in the following years. This impact has been felt most significantly at the southernmost regions of the Everglades. A study in 2012 compared native species population counts in Florida from 1997 and found that raccoon populations declined 99.3%, opossums 98.9%, and rabbit/fox populations effectively disappeared.

Page 230

Human impact on coral reefs is significant. Coral reefs are dying around the world.Damaging activities include coral mining, pollution (organic and non-organic), overfishing, blast fishing, the digging of canals and access into islands and bays. Other dangers include disease, destructive fishing practices and warming oceans. Factors that affect coral reefs include the ocean's role as a carbon dioxide sink, atmospheric changes, ultraviolet light, ocean acidification, viruses, impacts of dust storms carrying agents to far-flung reefs, pollutants, algal blooms and others. Reefs are threatened well beyond coastal areas. Climate change, such as warming temperatures, causes coral bleaching, which if severe kills the coral.

Scientists estimate that over the next 20 years, about 70 to 90% of all coral reefs will disappear. With primary causes being warming ocean waters, ocean acidity, and pollution. In 2008, a worldwide study estimated that 19% of the existing area of coral reefs had already been lost. Only 46% of the world's reefs could be currently regarded as in good health and about 60% of the world's reefs may be at risk due to destructive, human-related activities. The threat to the health of reefs is particularly strong in Southeast Asia, where 80% of reefs are endangered. By the 2030s, 90% of reefs are expected to be at risk from both human activities and climate change; by 2050, it is predicted that all coral reefs will be in danger. Pollution by wastewater:

Domestic, industrial and agricultural wastewater makes its way to wastewater plants for treatment before being released into aquatic ecosystems. Wastewater at these treatment plants contains a cocktail of different chemical and biological contaminants which may influence surrounding ecosystems.