Download Chereads APP
Chereads App StoreGoogle Play
Chereads

One Piece: Isshin, The Sword Saint

Xerotia
--
chs / week
--
NOT RATINGS
129.2k
Views
Synopsis
Isshin Ashina, The Sword Saint, lost to a cowardly Sekiro, and died an unsatisfactory death, his wish of a good fight, left unfulfilled. In the Great Beyond he met a being, who gave him another chance, in a new world, a world where he could finally meet his match, where his wish could finally be fulfilled. This is the journey of Isshin The Sword Saint in the World of One Piece. Played Sekiro - Shadows Die Twice (Although I died more than twice). Loved the character of Isshin, the Gloc-Sword Saint. Also love One Piece. Thus, the combo of both. Enjoy! As a side note, if you haven't played Sekiro, highly encourage you check it out. If not, well, you're missing out on one of the greatest games of all time, and the game with the BEST, singular best, combat system of all time.
VIEW MORE

Chapter 1 - Word Count- DON'T READ

A black hole is a region of spacetime wherein gravity is so strong that no matter or electromagnetic energy (e.g. light) can escape it.[2] Albert Einstein's theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole.[3][4] The boundary of no escape is called the event horizon. A black hole has a great effect on the fate and circumstances of an object crossing it, but it has no locally detectable features according to general relativity.[5] In many ways, a black hole acts like an ideal black body, as it reflects no light.[6][7] Quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.

Objects whose gravitational fields are too strong for light to escape were first considered in the 18th century by John Michell and Pierre-Simon Laplace.[8] In 1916, Karl Schwarzschild found the first modern solution of general relativity that would characterise a black hole. Due to his influential research, the Schwarzschild metric is named after him. David Finkelstein, in 1958, first published the interpretation of "black hole" as a region of space from which nothing can escape. Black holes were long considered a mathematical curiosity; it was not until the 1960s that theoretical work showed they were a generic prediction of general relativity. The discovery of neutron stars by Jocelyn Bell Burnell in 1967 sparked interest in gravitationally collapsed compact objects as a possible astrophysical reality. The first black hole known was Cygnus X-1, identified by several researchers independently in 1971.[9][10]

Black holes of stellar mass form when massive stars collapse at the end of their life cycle. After a black hole has formed, it can grow by absorbing mass from its surroundings. Supermassive black holes of millions of solar masses (M☉) may form by absorbing other stars and merging with other black holes, or via direct collapse of gas clouds. There is consensus that supermassive black holes exist in the centres of most galaxies.

The presence of a black hole can be inferred through its interaction with other matter and with electromagnetic radiation such as visible light. Any matter that falls toward a black hole can form an external accretion disk heated by friction, forming quasars, some of the brightest objects in the universe. Stars passing too close to a supermassive black hole can be shredded into streamers that shine very brightly before being "swallowed."[11] If other stars are orbiting a black hole, their orbits can be used to determine the black hole's mass and location. Such observations can be used to exclude possible alternatives such as neutron stars. In this way, astronomers have identified numerous stellar black hole candidates in binary systems and established that the radio source known as Sagittarius A*, at the core of the Milky Way galaxy, contains a supermassive black hole of about 4.3 million solar masses.

pathological artefacts from the symmetry conditions imposed, and that the singularities would not appear in generic situations. This view was held in particular by Vladimir Belinsky, Isaak Khalatnikov, and Evgeny Lifshitz, who tried to prove that no singularities appear in generic solutions. However, in the late 1960s Roger Penrose[48] and Stephen Hawking used global techniques to prove that singularities appear generically.[49] For this work, Penrose received half of the 2020 Nobel Prize in Physics, Hawking having died in 2018.[50] Based on observations in Greenwich and Toronto in the early 1970s, Cygnus X-1, a galactic X-ray source discovered in 1964, became the first astronomical object commonly accepted to be a black hole.[51][52]

Work by James Bardeen, Jacob Bekenstein, Carter, and Hawking in the early 1970s led to the formulation of black hole thermodynamics.[53] These laws describe the behaviour of a black hole in close analogy to the laws of thermodynamics by relating mass to energy, area to entropy, and surface gravity to temperature. The analogy was completed when Hawking, in 1974, showed that quantum field theory implies that black holes should radiate like a black body with a temperature proportional to the surface gravity of the black hole, predicting the effect now known as Hawking radiation.[54]

Observation

On 11 February 2016, the LIGO Scientific Collaboration and the Virgo collaboration announced the first direct detection of gravitational waves, representing the first observation of a black hole merger.[55] On 10 April 2019, the first direct image of a black hole and its vicinity was published, following observations made by the Event Horizon Telescope (EHT) in 2017 of the supermassive black hole in Messier 87's galactic centre.[56][57][58] As of 2023, the nearest known body thought to be a black hole, Gaia BH1, is around 1,560 light-years (480 parsecs) away.[59] Though only a couple dozen black holes have been found so far in the Milky Way, there are thought to be hundreds of millions, most of which are solitary and do not cause emission of radiation.[60] Therefore, they would only be detectable by gravitational lensing.

Etymology

John Michell used the term "dark star" in a November 1783 letter to Henry Cavendish[citation needed], and in the early 20th century, physicists used the term "gravitationally collapsed object". Science writer Marcia Bartusiak traces the term "black hole" to physicist Robert H. Dicke, who in the early 1960s reportedly compared the phenomenon to the Black Hole of Calcutta, notorious as a prison where people entered but never left alive.[61]

The term "black hole" was used in print by Life and Science News magazines in 1963,[61] and by science journalist Ann Ewing in her article "'Black Holes' in Space", dated 18 January 1964, which was a report on a meeting of the American Association for the Advancement of Science held in Cleveland, Ohio.[62][63]

In December 1967, a student reportedly suggested the phrase "black hole" at a lecture by John Wheeler;[62] Wheeler adopted the term for its brevity and "advertising value", and it quickly caught on,[64] leading some to credit Wheeler with coining the phrase.[65]

The no-hair theorem postulates that, once it achieves a stable condition after formation, a black hole has only three independent physical properties: mass, electric charge, and angular momentum; the black hole is otherwise featureless. If the conjecture is true, any two black holes that share the same values for these properties, or parameters, are indistinguishable from one another. The degree to which the conjecture is true for real black holes under the laws of modern physics is currently an unsolved problem.[47]

These properties are special because they are visible from outside a black hole. For example, a charged black hole repels other like charges just like any other charged object. Similarly, the total mass inside a sphere containing a black hole can be found by using the gravitational analogue of Gauss's law (through the ADM mass), far away from the black hole.[66] Likewise, the angular momentum (or spin) can be measured from far away using frame dragging by the gravitomagnetic field, through for example the Lense–Thirring effect.[67]

When an object falls into a black hole, any information about the shape of the object or distribution of charge on it is evenly distributed along the horizon of the black hole, and is lost to outside observers. The behaviour of the horizon in this situation is a dissipative system that is closely analogous to that of a conductive stretchy membrane with friction and electrical resistance—the membrane paradigm.[68] This is different from other field theories such as electromagnetism, which do not have any friction or resistivity at the microscopic level, because they are time-reversible.[69][70]

Because a black hole eventually achieves a stable state with only three parameters, there is no way to avoid losing information about the initial conditions: the gravitational and electric fields of a black hole give very little information about what went in. The information that is lost includes every quantity that cannot be measured far away from the black hole horizon, including approximately conserved quantum numbers such as the total baryon number and lepton number. This behaviour is so puzzling that it has been called the black hole information loss paradox.[69][71]

retain the nearly neutral charge of the star. Rotation, however, is expected to be a universal feature of compact astrophysical objects. The black-hole candidate binary X-ray source GRS 1915+105[76] appears to have an angular momentum near the maximum allowed value. That uncharged limit is[77]

J

G

M

2

c

,

{\displaystyle J\leq {\frac {GM^{2}}{c}},}

allowing definition of a dimensionless spin parameter such that[77]

0

c

J

G

M

2

1.

{\displaystyle 0\leq {\frac {cJ}{GM^{2}}}\leq 1.}[77][Note 1]

The photon sphere is a spherical boundary where photons that move on tangents to that sphere would be trapped in a non-stable but circular orbit around the black hole.[112] For non-rotating black holes, the photon sphere has a radius 1.5 times the Schwarzschild radius. Their orbits would be dynamically unstable, hence any small perturbation, such as a particle of infalling matter, would cause an instability that would grow over time, either setting the photon on an outward trajectory causing it to escape the black hole, or on an inward spiral where it would eventually cross the event horizon.[113]

While light can still escape from the photon sphere, any light that crosses the photon sphere on an inbound trajectory will be captured by the black hole. Hence any light that reaches an outside observer from the photon sphere must have been emitted by objects between the photon sphere and the event horizon.[113] For a Kerr black hole the radius of the photon sphere depends on the spin parameter and on the details of the photon orbit, which can be prograde (the photon rotates in the same sense of the black hole spin) or retrograde.[114][115]

Ergosphere

The photon sphere is a spherical boundary where photons that move on tangents to that sphere would be trapped in a non-stable but circular orbit around the black hole.[112] For non-rotating black holes, the photon sphere has a radius 1.5 times the Schwarzschild radius. Their orbits would be dynamically unstable, hence any small perturbation, such as a particle of infalling matter, would cause an instability that would grow over time, either setting the photon on an outward trajectory causing it to escape the black hole, or on an inward spiral where it would eventually cross the event horizon.[113]

While light can still escape from the photon sphere, any light that crosses the photon sphere on an inbound trajectory will be captured by the black hole. Hence any light that reaches an outside observer from the photon sphere must have been emitted by objects between the photon sphere and the event horizon.[113] For a Kerr black hole the radius of the photon sphere depends on the spin parameter and on the details of the photon orbit, which can be prograde (the photon rotates in the same sense of the black hole spin) or retrograde.[114][115]

Ergosphere

Rotating black holes are surrounded by a region of spacetime in which it is impossible to stand still, called the ergosphere. This is the result of a process known as frame-dragging; general relativity predicts that any rotating mass will tend to slightly "drag" along the spacetime immediately surrounding it. Any object near the rotating mass will tend to start moving in the direction of rotation. For a rotating black hole, this effect is so strong near the event horizon that an object would have to move faster than the speed of light in the opposite direction to just stand still.[117]

The ergosphere of a black hole is a volume bounded by the black hole's event horizon and the ergosurface, which coincides with the event horizon at the poles but is at a much greater distance around the equator.[116]

Objects and radiation can escape normally from the ergosphere. Through the Penrose process, objects can emerge from the ergosphere with more energy than they entered with. The extra energy is taken from the rotational energy of the black hole. Thereby the rotation of the black hole slows down.[118] A variation of the Penrose process in the presence of strong magnetic fields, the Blandford–Znajek process is considered a likely mechanism for the enormous luminosity and relativistic jets of quasars and other active galactic nuclei.

Innermost stable circular orbit (ISCO)

Main article: Innermost stable circular orbit

In Newtonian gravity, test particles can stably orbit at arbitrary distances from a central object. In general relativity, however, there exists an innermost stable circular orbit (often called the ISCO), for which any infinitesimal inward perturbations to a circular orbit will lead to spiraling into the black hole, and any outward perturbations will, depending on the energy, result in spiraling in, stably orbiting between apastron and periastron, or escaping to infinity.[119] The location of the ISCO depends on the spin of the black hole, in the case of a Schwarzschild black hole (spin zero) is:

r

I

S

C

O

=

3

r

s

=

6

G

M

c

2

,

{\displaystyle r_{\rm {ISCO}}=3\,r_{s}={\frac {6\,GM}{c^{2}}},}

and decreases with increasing black hole spin for particles orbiting in the same direction as the spin.[120]

Plunging region

The final observable region of spacetime around a black hole is called the plunging region. In this area it is no longer possible for matter to follow circular orbits or to stop a final descent into the black hole. Instead it will rapidly plunge toward the black hole close to the speed of light.[121][122]

Given the bizarre character of black holes, it was long questioned whether such objects could actually exist in nature or whether they were merely pathological solutions to Einstein's equations. Einstein himself wrongly thought black holes would not form, because he held that the angular momentum of collapsing particles would stabilise their motion at some radius.[123] This led the general relativity community to dismiss all results to the contrary for many years. However, a minority of relativists continued to contend that black holes were physical objects,[124] and by the end of the 1960s, they had persuaded the majority of researchers in the field that there is no obstacle to the formation of an event horizon.[125]

Penrose demonstrated that once an event horizon forms, general relativity without quantum mechanics requires that a singularity will form within.[48] Shortly afterwards, Hawking showed that many cosmological solutions that describe the Big Bang have singularities without scalar fields or other exotic matter.[clarification needed] The Kerr solution, the no-hair theorem, and the laws of black hole thermodynamics showed that the physical properties of black holes were simple and comprehensible, making them respectable subjects for research.[126] Conventional black holes are formed by gravitational collapse of heavy objects such as stars, but they can also in theory be formed by other processes.[127][128]

Gravitational collapse

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidenceThe Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidenceThe Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidenceThe Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidenceThe Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[150] NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.[151]

If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 years.[152] A supermassive black hole with a mass of 1011 M☉ will evaporate in around 2×10100 years.[153] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.[152]

Observational evidence

can be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

Microlensing

Another way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternatives

can be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternatives

can be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternativescan be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Sun; a disk of interstellar gas and dust called an accretion disk; and two jets perpendicular to the accretion disk.[194][195]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.[196]

It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole.[197] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.[198]

MicrolensingAnother way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic lens. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few arcseconds. Microlensing occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way,[199][200] and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole.[201]

Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.[202]

Alternatives